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Identifying new drug targets and developing safe and
effective drugs is both challenging and risky. Furthermore,
characterizing drug development risk, the probability that a
drug will eventually receive regulatory approval, has been
notoriously hard given the complexities of drug biology
and clinical trials. This inherent risk is often misunderstood

Introduction

With less than 10% of potential drugs that start clinical development
eventually entering the market (1, 2), drug development is a very risky
endeavor. Biotechnology and pharmaceutical companies are well
aware of this challenge as they spend an average of more than 10 years
and invest north of $2.5B for each drug that gets approved by
regulators (3). Within this context, the ability to accurately assess the
risk of drug development, or, on the flip side, the probability of
technical and regulatory success (PTRS) of a particular development
program is critical. We define PTRS as the probability that a devel-
opment program will receive approval by the regulator (For example,
the FDA in the US), i.e., the lower the PTRS, the higher the risk.

First, this ability to accurately assess the PTRS can allow drug
development companies to prioritize among the different programs
in their pipeline, make better resource allocation decisions, and
ultimately increase the productivity of R&D efforts and invest-
ment (4). Which development program should progress to the next
phase of clinical development (e.g., from phase I to phase II), and
which one should not? What is the overall risk profile of the
pipeline? Is the company taking too much risk, or is it playing it
too safe? What can be done to de-risk a particular development
program? These are all questions that can be answered by a
comprehensive and unbiased model that accurately predicts the
PTRS of specific programs.
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and mischaracterized, leading to inefficient allocation of
resources and, as a result, an overall reduction in R&D
productivity. Here we argue that the recent resurgence of
Machine Learning in combination with the availability of
data can provide a more accurate and unbiased estimate of
drug development risk.

Second, it can provide a broader view of risk and optimize
resource allocation, as companies can also estimate the risk
associated with external molecules that they can potentially
acquire/in-license. This allows them to better value the potential
of those molecules and/or to also make comparisons with their own
development programs in the same indication. For clarity, we define
“development program” as the combination of a specific molecule
(or combination of molecules) and a particular indication, in a
given phase of development. For example, a development program
can be a phase II clinical trial that aims to evaluate the combination
of a PD-1 molecule and a CTLA-4 molecule, for the treatment of
melanoma. As a result, a particular drug (say a PD-1 inhibitor)
might result in several different development programs - for
example, one for say, breast cancer in phase 1, another one for
melanoma in phase 3, etc.

Current Approach

In broad terms, the current approach that the industry uses to
estimate the PTRS of a development program is based on:

i. Historical estimates driven by (i) the current state of the program
(beginning of phase I, end of phase II, etc.), and (ii) the specific
disease (breast cancer, relapsing-remitting multiple sclerosis,
hypertension, etc.).

ii. Expert input from experienced physicians and drug developers,
known in the industry as Key Opinion Leaders (KOL).

ifi. Statistical (typically both univariate and multivariate) analyses
performed by the R&D analytics groups within pharma companies
and biotechnology companies. These analyses (e.g., refs. 5, 6)
typically take into account several parameters (e.g., data from
phase I, the mechanism of action of the drug, the availability of
patients for the trial, etc.).

The typical approach is to start with an initial estimate based on (i)
above-say, for example, 44% for a drug in breast cancer that has just
started its phase III trial (1). This number is then adjusted based on
qualitative input from KOLs (e.g., depending on beliefs around the
specific biology of the drug, the specific phase I and phase II safety and
efficacy data, etc.), and input from the analytics team of the sponsor
company.

To our knowledge, there have only been early/nascent efforts to
utilize Machine Learning (ML) in the process described above. On the
basis of our own experience, we see several reasons for this
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underwhelming use of ML in drug development to-date. Some of those
reasons are technical, and some of those reasons are cultural.

First, pharma companies seek to primarily utilize their own data
in their statistical analyses, and not a larger industry-wide dataset
that is more representative of successes and failures of develop-
ment programs. Second, and as we describe in more detail in the
section below, efforts often start with ambition but get quickly
abandoned as practitioners realize that the required effort to put
together the appropriate data set for ML algorithms to be trained
on is significantly higher than initially expected. At the end of this
article we discuss importance of data quality and completeness and
show that it contributes significantly to an increase in overall
predictive power.

In addition, there are also several cultural reasons behind this
slower adoption of ML in drug development. Pharmaceutical
companies are naturally focused on developing molecules, and up
until very recently, executives had little patience for ML-driven
efforts that did not produce positive results within a few weeks or
months. It unfortunately takes a much more sustained commitment
to build the right data infrastructure and models from scratch, and,
as a result, early efforts have been abandoned. Furthermore, most
pharmaceutical companies have well-defined processes, which cre-
ate some inertia if new approaches are not properly embedded
within the existing decision-making fabric of the organization. In
other words, technology is often half the battle; the other half is
getting the technology accepted and widely deployed within com-
panies that have been used to a particular approach for several
years. This said, we have noticed some cultural shifts lately, with
several pharmaceutical and biotechnology executives becoming
much more attuned to the potential upside from the use of ML
models, and therefore being more patient as their investments in the
space mature. In our own view, the trend has started, but there is
still a lot of progress to be made before digital/ML approaches are
fully embraced.

Within this context, we describe below an approach that is based on
(i) a comprehensive dataset of successes and failures of development
programs across the industry and (ii) ML-driven models, instead of
the statistical approaches described above.

The Era of Machine Learning

Machine Learning, a subset of techniques within the broader
umbrella of Artificial Intelligence (AI), is becoming increasingly
utilized in the pharmaceutical industry and in the broader biomedical
sciences field. To more precisely define the goals of AI, promote its fair
and ethical use, and develop a broader vision for Al in this space,
specialized industry groups are being formed, for example, the Alliance
for Artificial Intelligence in Healthcare (AAIH). It is not our intent
here to comprehensively describe those efforts (see ref. 7 for a more
comprehensive review), but they indeed span different areas: from
drug discovery, to efforts around protocol design, clinical trial exe-
cution (e.g., patient recruitment, site selection, biomarkers, etc.),
diagnostics and imaging (e.g., classifying histopathology images),
precision medicine/personalized treatment (e.g., matching existing
drugs to patients based on molecular data), and risk assessment. This
short article focuses on the latter: The use of machine learning to
estimate PTRS.

Overall approach

There have been a few efforts that focus on predicting the success of
clinical development programs (see, for example, refs. 8, 9). Some are

AACRJournals.org

Assessing Drug Development Risk Using Machine Learning

based on more traditional/statistical approaches, while others utilize
more advanced machine learning techniques. Here, we propose a
systematic approach that incorporates more than 100 different factors
across five broad areas:

i. Clinical trial design: Choice of primary/secondary endpoints,
number of arms, inclusion/exclusion criteria, type of comparator
used, use of biomarkers, number of patients, number of sites, etc.

ii. Clinical trial outcomes: The reported outcomes of the drug in
previous studies. For example, the published phase II data for a
drug that is currently transitioning to phase III, etc.

ili. Regulatory data: Any signals/designations by regulatory agencies.
For example, prior approvals in other indications/Therapeutic
Areas, breakthrough therapy designation, accelerated approval
pathway, etc.

iv. Drug biology: Mechanism of action, modality, genetic and epige-
netic alterations, target gene expression, tumor immunogenicity
(for immuno-oncology drugs), molecular structure, etc.

v. Sponsor characteristics: Experience of the company running the
development program in the specific disease area, etc.

Once the data described above are collected and curated for all
development programs that have been both approved as well as failed
in the past ~20 years (i.e., thousands of both successful and unsuc-
cessful programs), a machine learning model can be trained to identify
patterns in all that data and accurately predict the PTRS of the
development program of interest.

We also note here that some of the feature categories above are
specific to therapeutic areas and/or specific indications. For example,
within (ii) above, oncology trials measure different outcomes, for
example, objective response rate (ORR), overall survival (OS), pro-
gression-free survival (PFS), than trials in rheumatoid arthritis (e.g.,
American College of Rheumatology 20/50/70 criteria, etc.) or Parkin-
son's [e.g., Movement Disorder Society-Unified Parkinson's Disease
Rating Scale (MDS/UPDRS), ON/OFF, etc.]. Similarly, the most
relevant drug biology features under (iv) above can differ from disease
area to disease area. As a result, we argue — and indeed our own
experience confirms this — that while overarching machine learning
models can be trained across therapeutic areas, models that are
specifically tailored to an indication (e.g., Parkinson's) or a family of
indications (e.g., solid tumors) are likely to perform better.

Data challenges

Before we go into the performance of the proposed model, it is
important to emphasize some of the practical challenges involved in
building such a model.

First, there are dozens of data sources that need to be accessed and
harmonized. This includes a significant software engineering challenge
to build the appropriate data pipelines that are regularly updated, as
well as address issues with data integration and consistency. Data can
come from multiple sources, for example, (i) readily available public
sources (e.g., clinicaltrials.gov, TCGA, ICGC, KEGG and REACTOME
pathways, etc.); (ii) data in the private domain that typically require a
subscription (e.g., data providers like Informa, full-text publications,
etc.); (iii) data in the public domain that needs to be curated (e.g.,
conference abstracts, press releases, scientific articles, etc.); and (iv)
private/in-house data owned by different pharmaceutical companies
(e.g., assay data, patient data, drug metabolism and pharmacokinetics,
etc.) and/or real-world data (e.g., for precision medicine, claims data)
owned by healthcare providers and insurance companies. The format,
conventions, and even ontologies (e.g., classification of drug
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modalities, gene targets, drug names, etc.) that are used are typically
different across data sources, and they need to be unified in a consistent
way. In addition, one needs to keep track of when the data is released,
especially clinical trial outcomes data: improperly incorporating such
data without taking into account the release dates could result in
models that suffer from forward-looking biases (see more details
below).

Second, and perhaps more importantly, the need for human
curation and quality control, even in the era of “big data” and Al,
should not be underestimated. Data is typically missing, mistakes in
data coding are prevalent, and the list of difficulties goes on.
Furthermore, the data with the most predictive power is oftentimes
not neatly arranged in a database but needs to be put together by
content experts. For example, the clinical trial outcomes data in (2)
above is dispersed across thousands of journal publications, press
releases, conference abstracts, etc. Well-trained biologists and MDs
would need to review this literature and capture the relevant data
using a consistent methodology. Given the complexity of this task,
Natural Language Processing methods can potentially assist the
experts and cut down the required time for identifying the most
relevant data (for example, by training an NLP model to identify the
most relevant publications and then highlight the relevant sections
within those publications), but, unfortunately, this process would be
extremely hard to fully automate.

In our experience, more than 80% of the effort can typically go in
data-related tasks described above, leaving not more than 20% of the
effort towards training the different machine learning models.

Explainability

A final point on the challenges of using machine learning in areas
like risk assessment is the need for transparency and “explainability.”
Drug developers need to know more than just the PTRS of their
development program. In order to both develop some confidence
around this prediction, as well as be able to potentially influence it - for
example, improve the PTRS by making changes to the clinical trial
protocol (see ref. 9) — they need to know the features that contribute to
the overall PTRS estimate. This is not an area where a “black box”
approach is likely to work.

As an example, consider that although it is definitely helpful to know
that the estimated PTRS of a phase II program in breast cancer is, say,
26% (above historic average), it is even more informative to know what
drives that probability up or down. Is it the mechanism of action of the
drug or the choice of endpoints in the clinical trial? Or, is this based
solely on positive initial data (for example ORR)? And to what extent is
this prediction influenced by the fact that the sponsor company has
limited experience in the space, and that the drug has not received any
positive signals (e.g., breakthrough therapy) from the FDA? Asa result,
some popular machine learning approaches (e.g., deep learning) are
less applicable in this particular domain, particularly given the impor-
tance of making the link between the output of the model and decision-
making in real life.

Performance of Machine Learning
Models

Within the context described above, we trained several machine
learning algorithms - random forests, k-nearest neighbors, Support
Vector Machines (SVMs), logistic regression, Gradient Boosting Trees,
etc. The purpose here is not to go deep into the ML training
methodology that was used, and readers who seek more detail should
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refer to our Technical Supplement (10). But we should nonetheless
point out that we used the standard practices that are broadly
acceptable in the AT community: we were careful to avoid forward-
looking biases by only using relevant features, imputed missing data
and binned certain continuous variables as needed, avoided data
leakage by processing any data within the cross-validation folds,
applied nested cross-validation to select the optimal models and used
bootstrapping/bagging to assess their variance and any potential
overfitting. Performance metrics are reported on unseen test sets.

The models were rigorously tested under different conditions, for
example:

+ Different therapeutic areas and indications (e.g., Oncology,
Inflammation, Immunology, Central Nervous System diseases,
etc.);

+ Different stages of development (e.g., phase Ia/b, phase II, phase
1II);

« Different types of molecules (e.g., first-in-class, versus targets that
have been previously validated/approved, etc.); and

+ Different timeframes (e.g., prior to 2010, 2010-2017, post 2017).

Overall performance

We will not provide the full assessment in this short paper, but we
will illustrate some average results. Using the standard AUC (area
under the ROC curve) metric for a randomly chosen test set, our
models achieve a performance of 0.81-0.93 depending on the different
scenarios mentioned above.

To illustrate one specific example, when testing the algorithm
across several hundred randomly chosen solid tumor programs at
the beginning of phase II, the AUC is 0.89. Put another way, the
algorithm correctly predicts more than 77% of the development
programs that eventually receive regulatory approval, and more
than 85% of the programs that do not. This performance is
intriguing, particularly given how early those predictions are made
(development programs at the beginning of phase II can be 4-
6 years away from a regulatory decision), and how complex the
overall problem is.

Perhaps the most important question is whether this model can
generalize and, as a result, predict the future - in other words,
prospective testing. To explore this scenario, we trained several models
using data from development programs that either succeeded or failed
in the 2000-2016 timeframe, and then tested the performance of the
model on development programs in the 2017-2019 timeframe. To use
the same example of early phase II solid tumor programs above, the
model achieved an AUC of 0.90. Put differently, the algorithm
correctly predicted more than 80% of the development programs that
eventually received regulatory approval, and more than 85% of the
drugs that didn't.

As a word of caution, we emphasize that we do not advocate that
drug development decisions should rely solely on the recommenda-
tions of machine learning models. Drug development is an incredibly
complex process, and there is still “art” involved in it. But we do argue
that drug development experts in Portfolio Review Committees and/or
Business Development decision-makers can utilize these machine
learning models to calibrate and potentially remove any biases from
their decision. These models do not rely on just a subset of successful or
unsuccessful development programs. They have uncovered complex
patterns across all such programs and can offer an input that will allow
drug developers to make more informed decisions and with greater
confidence.
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Comparison to more traditional approaches

Further to the evaluation described above, we also compared the
performance of our Machine Learning methodology to the perfor-
mance of two “traditional” approaches:

i. Regression models, both univariate and multivariate, that take into
account the most predictive or the three most predictive features
respectively. Comparing those models across different assump-
tions (e.g., phases of development) we note that the AUC of our
ML methodology yields significantly higher AUC (by 0.05-0.20)
compared with these more simplistic models. For example, our
ML methodology achieves an AUC of 0.91 when it assesses
programs at the start of Phase 1, while the univariate model
achieves an AUC of 0.71 and the multivariate model an AUC of
0.77. Please see (10) for more details.

ii. A Machine Learning model that is trained on a limited set of only
publicly available data. Comparing the two models across different
assumptions we note that the AUC of our ML methodology is
significantly higher than the AUC of this more simplistic model
(by 0.15-0.33). For example, our ML methodology achieves an
AUC 0f 0.88 when it assesses programs at the end of Phase 2, while
the ML model trained on the publicly available data achieves an
AUC of 0.73. Please see (10) for further details.

One interesting conjecture from this analysis is that, for this
particular problem, the quality and completeness of the underlying
dataset is perhaps more important than the actual ML methodology
that is used. Of course, both contribute to an increase in AUC and our
methodology attempts to improve on previous efforts on both of those
fronts, but when it comes to the relative importance of those two
elements, data quality and completeness ranks higher. We would of
course not want to generalize, and significant more work is needed
before once can make any conclusive statements. Nevertheless, both
our experience in the sector and the analysis above suggest that data
availability is perhaps more important than the finetuning of Machine
Learning models and parameters.

Conclusion

There is inherent risk in drug development. But if we utilize
advances in AI coupled with curated industry-wide data to understand
it and quantify it better, then allocation of resources can be much more
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